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FOREWORD

This is the interim report on work being performed by Rohr Industries -

Design and Fabrication of Titanium Multiwall Thermal Protection System

(TPS).

This program is administrated by the National Aeronautics Administration

Langley Research Center (NASA LaRC). Mr. John Shideler of the Thermal

Structures Branch, Structures and Dynamics Division, is Technical

Monitor for the program.

The following Rohr personnel were the principal contributors to the

program during this reporting period: Winn Blair, Program Manager;

T. C. Atkinson, Manufacturing Technology; J. E. Meaney, Structures;

R. M. Martinez, Project Engineer; H. A. Rosenthal, Thermal Testing;

R. H. Tinmls, Preliminary Design; and L. A. Wiech, Engineering Labora-

tory. Overall program responsibility is assigned to the Rohr Aerospace

R&D Engineering Organization with LI. Bockenhauer, Manager.
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SUMMARY

A Titanium Multiwall Thermal Protection System (TPS) panel conceived by

NASA was designed. An acceptable fabrication process was developed, and

the panel design was verified through mechanical and thermal testing of

component specimens.

INTRODUCTION

Rohr Industries was awarded a contract January 1979 to design and fabri-

cate titaniumvnultiwall thermal protection panels for testing by NASA.

Progress, current activities, and future milestones are shown in Figures

l and 2.

The primary objective of this program is to design and fabricate metallic

multilayer sandwich panels for test and evaluation by NASA. The program

consists of two tasks:

Task l - Design Definition

Task 2 - Test Model Design and Fabricatien

Task 1 consists of a preliminary design of panels and tools, fabrication

of test panels and testing in face tension, flexural strength, creep,

thermal conductivity and _.littance.

In Task 2, a nine panel array shown in Figure 3, will be fabricated for

testing in the Langley Research Center B-foot High Temperature Struc-

tures Tunnel. A two-panel array shown in Figure 4 will be fabricated

and delivered to the Langley Research Center for vibrational and

acoustical tests. A second two-panel array will be delivered to

Johnson Space Center for radiating tests.

Only the activities of Task 1 will be described in this report.



DESIGNDEFINITION

The configuration and constructien details for a titanium multiwall

panel is shownin Figure 5. The panel is a nine-sheet sandwich struc-
ture consisting of an upper and lower face sheet, four dimpled sheets,

three septum sheets, and clips for attachnlent to the test fixture. The

material for all detail parts is Ti-6AI-4V. The joining system used is

a Rohr proprietary process :n which the interfaces of the parts to be

joined are plated with two or mor( el_lents. When put in contact with

each other and heated to approxim_alY 1214K (1725_F), the plating

material melts creating a short time eutectic with the Ti-6AI-4V. While

holding at this temperature for a specified time the plating material is

diffused into tileTi-6AI-4V creating a bond at all plated interfaces.

DESIGN

P.agelDe.sign - Tile panel assembly shown in Figure 5 was designed from a

sketch and infor_ation supplied by NASA Langley Research Lenter, Hampton,

Virginia. Particular attention was given to the fabrication problem

encountered with fondling of the dimpled sheets. The design in Figure 5

shows a 25.75 angle on all sides of the panel. The angle slope is in

the flow direction and also permits the use of a conmlon dimpled sheet

used in each of the four layers. The design is also unique inasmuch as

the outer skins are fon_led on the 25.75 _ angle and are joined to each

other by Liquid Interface Diffusion bonding to close out the panel's

fnur sides. The panel sides ere corrugated to give stiffness and to

allow the panels to nest durinq tile time they are being thermally

expanded during service.



Skin Forming Tool Design - The tool design shown in Figure 6 takes into

account the possibility of mass producing the skins. The design allows

for multiple loading parts into mirror image die halves and forming as

many as six skins simultaneously. Argon gas is used as the pressure

media for superplastic foming the skins.

Di_ml_LedSheet_Foming Tool Design - The design shown in Figure 7 takes

into account Ti-6-4 material size availability, themal expansion and

part quantity. The die plates were designed to permit economic installa-

tion of a large number of pins. A shim plate was added to permit some

adjustment of the dimple height by adding to or removing from the plate.

TEST PANEL FABRICATION

Panels for Structural and Thermal Tests - The dimpled sheet shown in

Figure 8 was superplastically formed in a vacuum furnace using 8.27 KPa

(I.2 pounds per square inch) dead weight pressure. Figure 9 shows the

dimpled sheet foming tool being loaded into the vacuum furnace. After

it was formed, the dimpled sheet was trimmed by chem blanking, (see

Figure lO), and _as plated on the nodes only using the Rohr proprietary

process. The plating parameters were established using full sized sheets

305 mm (12") by 610mm (24"). Figure II shows a plated sheet with cut-

outs made for microexamination.

The layup for LID bonding was accomplished by aligning the nodes opposing

each other through the septum sheets, and by resistance welding at each

of the four corners. This procedure held the dimpled sheets, septum

sheets and skins in position for LID bonding. For LID bonding, the

layup ,s placed on a flat graphite reference block, with 18 mm (.7")

thick b cks _laced on each of the four sides. The side blocks control

the panel height and prevent the panel from being crushed by a gr_phlte

block that was placed on top of the layup for bonding pressure. The

assembly was then placed into a vacuum furnace for LID bonding. The



furnace was evacuated to 1 < 10..5 torr, heated to 1214K (1725°F), and

held for a specific period of time. During this period the plated

material is melted and diffused into the Ti-6AI-4V creating a bond joint

at all plated interfaces.

All panels were fabricated without clips and doublers. All panels for

testing in flatwise face tension, beamflexure, creep and thermal con-
ductivity were LID (Liquid Interface Diffusion) bonded in sizes of 152

mm(6") by 305 mm(12") and 305 mm(12") by 305 mm(12"). Figure 12

shows three of these panels.

After the panels were LID bonded a layout for cutting of all the test

specimenswasmade. The layout for the structural test specimens is
shownin Figures 13, 14 and 15. The test speci11_enswere cut using an

electric discharge saw. Specimensfor static creep test were taken from

each material gage used in the sandwich. Twothermal conductivity test

specimenswere cut to a size 1.8 by 203 by 203 mm(.7" x 8" x 8"). The
emittance test specimen, .076 by 50 by lO0 nml(.003" x 2" x 4"), was

polished to a very high luster on one end and processed through two
thermal cycles, duplicating the fabrication process, then checked for

emittance on both the polished and unpolished areas. One specimenwas

oxidized for 30 minutes at 810K (lO00'F) and checked for emittance.

VacuumTight Panel Fabrication - This was a test to determine if a

vacuumtight parel can be produced. The dimpled sheets and septum
sheets were produced in the samemanneras for the structural test

panels. The skins which also close out the vacuumtight panel sides
shownin Figure 16 were superplastically for_1_edtwo at a time in a

mirror image die, shownin Figure 17. The forming was also accomplished

in a vacuumfurnace using 34.5 KPa (5 poundsper square inch) argon gas

pressure. The skins for the vacuumtight panel were plated around tile

periphery 5.1 mm(0.2") wide shownin Fio,ure 18.



After plating had been accomplished the skins, septum sheets, and

dimpled sheets shown in Figure 19 were assembled for LID bonding. The

nodes were aligned opposing each other through the septum sheets, and

resistance spot welded five places at each corner. This procedure held

the detail parts in place until the joint had been achieved by the LID

bondi_g process. For LID bonding, the assembly was placed on a flat

graphite Fsference surface shown in Figure 20. Also shown in Figure 20

are the graphite aids that are used to control the panel height and

bonding pressure. The panel was isolated from the graphite by commer-

cially pure titanium slip sheets. The assembly was then placed into a

vacuum furnace for LID bonding. The furnace was evacuated to I x lO"5

torr, then heated to 1214K (1725_F) and held for a specific time. During

this time period the plated material is melted and diffused into the

Ti-6AI-4V creating a bond joint at all plated interfaces. Figure 21

shows a LID bonded panel for vacuum tight evaluation.

THERMAL TEST ING

Emittance Tests - The samples tested were:

Sample =7910 - as received foil.

Sample =7911 - foil run through sandwich manufacturing process.

Sample :7912 - foil was polished, then run through sandwich manu-

facturing process.

Sample :7904 - foil oxidized at 810K (IO00"F) for 30 minutes.

These samples were supplied to General Dynamics for wavelength-reflectivity

measurements in their test apparatus described in the appendix. All tests

were made at room temperature. Reflectivity data were entered into their

computer program which de'ermined total normal emittance at various temp-

I eratures. Results are given in Table I and graphed in Figure 22. Note |I



For the most part only minor differences are shown between the samples•

There appears to be a slight increase in emittance when the sample goes

through the manufacturing process, i.e. compare 7910 and 791l. But

polished foil 7912 shows an even smaller difference. _s expected, the

foil oxidized for 0.5 hours at 8|OK (lO00°Fi has a higher emittance.

Additional tests have shown that emittance continues to increase as

oxidation time increases above 0.5 hours.

In summary, one can conclude that little is gained by polishing the

foil, and that manufacturing the sandwich out of as received foil is

satisfactory. Furthermore, additional data will be required to deter-

mine emittance as a function of oxidation time.

Conductivit__.Tes - Thermal Conductivity testing was subcontracted to

General Dynamics Convair Division. Tests were perfoYmed on two panels

having approximate dimensions of 17.3 by 203 by 203 mm (.68" by 8" by 8")

using a guarded hot plate apparatus, see Appendix A.

The test results showed higher conductivity than had been predicted.

After analyzing the test data and test conditions, it was concluded that:

I •

o

o

no

The test panel was too small.

Tests should be re-run by Rohr using a larger test panel, 17.3 by

305 by 305 nm, (.68" by 12" by 12").

The test should use a standard material (MIN-K) with a known thermal

conductivity next to the test panel.

The heating instrument should be capable of holding finite tempera-

ture control over the test area.

(Data from these Rohr tests have been added to the figure in the Appendix.

This data fal| about I0 percent higher than that predicted from NASA

CP-2065).

6



STRUCTURALTESTING

Flatwise Tension Tests - Test specimenswere approximately 50 by 50 mm

(2" by 2") and consisted of full depth sandwich and individual layers.

These specimenswere bondedwith Hysol EA934adhesive to aluminum load-

ing blocks. The blocks with the specimenwere loaded into the test
flxture as shownin Figure 23. This fixture was located in the _nstron

test machine. This see-up has swivel joints at both ends to account

for misalignments of load. Howeverthis device must overcomefriction
loads and these small loads can be very significant if they apply peel

loads to this sandwich configuration (see test results). Therefore for

future testing it is recon_mendedthat fixtures more sensitive to align-

ment be used.

The test results are summarizedin Tables 2 and 3. The lower values in

the full depth sandwich (Table 3) are indicative of predominant LID bond
failures rather than node metal failures. Howeverthe three very low

values in the individual layer testing (specimens 16-2, 22-2, and 24-4)

are not indicative of weakness in the bonding. These specimens had

significant metal failures, and it is suspected that their premature
failure was caused by a peel load introduced by the loading fixture (see

above discussion). There was a range in t_e numberof nodes per specimen,

however there did not appear to be any cJrrelation between their number

and the failure stress.

Basic Face Sheet Tension Tests - The specimens are standard ASTM E8 size

with a 12.7 mm (.50") wide test area. The specimens were of three

different thicknesses: .038, .076 and 0.10 mm (.0015", .003" and .004"),

and were tested in three physical conditions: a) as received from the

mill, b) after being run through the LID thermal cycle 1200K (1700°F)

for approximately 90 min., and c) sheets taken from actual bonded

sandwich panels. These _pecimens were tested at room temperature in

the Instron test machine and the following properties were determined:



yield and ultimate stress, percentage elongation, and modulus of elas-

ticity.

The test results are summarizedon Table 4. As shown, the as received

strength properties are significantly higher than those for standard
annealed Ti-6AI-4V sheet. These increases are attributed to the rolling

operations these sheets received before being s)nt to Rohr. The speci-
mensafter the LID thermal cycle produced strength properties close to

annealed sheet values, lhe low elongation value in the 0.038 mm(.0015")

foil indicates somecontamination during the thermal cycle. The .038 mm

(.0015") and .076 m_ (.003") specimens from the LID bonded panels exhibi-

ted lower strength and v_fy low elongation properties. This did not
occur in the 0. I0 n_:fl(.004") sheet. It is surmised that the .I0 mm(.004")

sheet is not as sensitive to surface contamination from the furnace and to

the dif%sion bonding as the thinner sheets.

BeamFlexure Tests - The seven test specimens had the following approxi-

mate dimensions: 3G5by 76 by 17 mm(12" by 3" by .65"). Ail seven

specimenswere tested in the test setup shownin Figure 24. This setup

was designed to provide a temperature gradient across a specimenwhile

it is being subjected to a four point bean,flexure test. As shown, the

hot side of the specimenwas heated by quartz lamps while the other

side wascooled by shop air. The heat in the lamps maybe regulated by

altering the input current and shop air flow is metered by a valve.
Ti-6AI-4V pads 12.7 mm(I/2" wide by .050" thick) were used to distri-

bute applied and reaction loads into the speci_l_ens. Twoof the

specimenswere tested at roomtemperature and did not require thermo-

couple instrumentation. Each of the other five specimens had eight

thermocouples instal led.

,ao room temperdt,Jre speciTnens were loaded in 89.0 )4 (20 lb.) increments

v_ith a return to zero load after each increment. The loads were applied

with a crosshead movement of .05 in/minute and the load was held for



30 sec. Deflection readings at the center of the specimen were taken at

each loading and _nloading.

Four of the five remaining specimens were tested to failure in the same

manner as described above except a temperature gradient was imposed.

Two specime_Is had a 422-700K (300_'-800°F) gradient and the other two had

a 422-811K (300_F-IOOO'_F) gradient. These specimens were brought to

temperatures before the loads were applied. The seventh specimen was

brought to a temperature gradient of 422-811K (300°-lO00°F) and then a

total load of 120.0 _ (27 Ibs.) was imposed and left for one hour. There

was a negligible an,ount of creep during the test.

The results are shown in Table 5. Note the very small temperat,Jre

gradients along the lengths of the specimens. The disbond failure mode

on the room temperature specimens occurred only after very severe buckling

waves took place in the face sheet. Deflection readings indicate that

permanent set and creep values were negligible.

C_re__e2___est__.ss-A total of eight specimens were tested for elevated

temperature creep. The specimens were .076 mm (.003 in.) foil which had

been diffusion bonded to corrugated core. After the core had bee,_ cut

away, the foil was cut into tensile specimens. The specimens were dead

weight loaded and a portable wrap around furnace supplied the tempera-

ture. Deflection was measured using a dial gage and a microscope.

Three of the eight specimens were tested at 811K (IO00°F) and 68.95 MPa

(lO,O00 psi) for I00 hours without failure. The other five specimens

were tested at higher stress levels and the results are plotted on

Figure 25. Comparison of the data for LID bonded foil with published

rupture data for annealed sheet indicates about a 25 percent reduction

iiicreep rupture due to the LID bonding process and loss of work

hardening imposed on the material by the rolling operation.

g



CONCLUSIONS

I •

_o

A design was completed which takes into consideration fabrication

techniques, thermal properties, mechanical properties, ]nd material
avai]ahiI]tv.

An acceptabl_ fal_rication process was developed,

Tile design _,v,,_,veri fled t hrou_lh mechanical and themal testing of

the materi_11s and sandwich test specin_ens.

I0
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Ftgure 24. Test Setup for Hot Beam Flexure Tests

34



: =_m / 0_'
'2m

WZ Z _']_

•_ -'_ <: < :r

_.Iv'

0...' ,

,.£ r_-_ +

_,_ _ ,,

._<z__o_ i _ ÷_-_

o<

neZ

°'i?,]!° *
0000 0 0 0 0 0 0

4"-i

u')

¢_J

S..

*_

L_

_r
o

35



I,-,,-

I---

I,I

I.--..
I,.-.-

I.L.I

+.

.,..I

qg's
p.,,,,.

IIc

n5

Ik

OP

It_

T

,k,.,, Z

++.,.+ J

l,lwl _

!
I
!

t

!1" !

" I
I
I
I
I
I
I
!

_ ,,,b !
b,, 7. I

us,,J |

I
t
I

ql, _ 41. • + +b • • • •

...4 e%l e,_ _lp _+, ,.0 I'_ _ Jl" 0 t_l

000¢) _¢'_ ¢)0 I._00

a_41 pt _ e_O _ --4 N _ N 11_

• • • • • • • • e. • •

O 1,,,41_0

i1-1.

i,,..l

"11:

Il-

l.-.

1.4

I,"1

i.,i

IIJ

111

F_
r+l

_--Z

,4 e,.,o

it-.

4_ + 4_ • 6 • • 4k + 4* 4k

• p4 ...4w..df%l _l

,..4 r_ _ ,4" '_ +i"11% .'10 ,._ O0

.,.4,0

0

_._ o o o _¢)oo0oo
C_+'_ 00,_<_00000

.o ._ I',,., ,,,0 _ t"_ -I,- P.l 0+ I%

0 £) t_ OC'IOI'I t'IC_I _._1"10

..4,0

i.n

i,n

o
0
+.._
o.

oi.-

5.

0

c

r,m_t_

0 ,-- P,J ,mP

O_ O's O_ O's

,: _ P...30p

36

OF F<)Oll QUALITy

,id,



r

-r"
(..b

(._
LIJ __-

2=
O U-

LIJ ;E V1
._j i,i e_

I-- LIJ

V1 .J

:3= UJ

_J CE
U- _:

LIJ
V%

.,I

L

tY
I.¢J

t
l-

a_

Z "P

.--I ¢/1 {:_
I-.-m¢F/ _,
rJC LLJ
U."_

I--

v

v v _ v v v v v v

0 0 _ 0 _._ 0 ,-- (:3 0

A

L_

v

0

#

m t
#

Z ._-.-; v v -,..- v v v v

m !

: t
Z
W

,i,._1
,Q-

_¢,,¢)

I I I I I I I
0 _ ("; CO (3_ 0 ,'--

p

v

v v v v v _ v

p.-, (/)v.
_:: "' 0 CO C) 0 0 r,- L¢_

I_ I I I I

O
O

_UJ

:un

I= !

t _ _ A A _ A A _ A A

_J (./') C_.
• . ,

f- : ,,,sv!

,--_ "' 0 0 0 0 0 0 _ 0 0

c/I

. % "7 "T "T "7 "T

c-
o

0
.r-

q-
.p

0
0

-,_ ._..

o_- _

C._

e- 1_.

e" ._

°I'm I_

E %-

X

O
U _r_
V_ c-
O • P"
f,. ,.-.
U 4_

pm
V

37



TABLE 3

FLATWISE TENSION TESTS

FULL DEPTH SANDWICH

SPECIMEN

NO.
i

I

2

3

4

5

6

7

8

Avg.

FAILURE

LOAD N, (LBS.)

4oo (9o)

367 (82.5)

351 (79)

371 (83.5)

291 (65.5)

378 (85)

287 (64.5)

222 (50)

FAILURE

_TRESS KPa (PSl)

157 (22.7)

143 (20.8)

137 (19.9)

145 (21.0)

114 (16.5)

148 (21.5)

112 (16.3)

88 (12.7)

267 _(9..0_).... I ....?04__ (__!15.__I)__
326 (73.3) 185 (18 5)

............... ............. "

LOCATION OF

FAILURE

Septum I/Core 2

Septum l/Core 2

Septum 2/Core 3

Septum 2/Core 3

Septum 2/Core 3

Septum I/Core 2

Septum I/Core 2

Septum I/Core 2

Septum I/Core 2
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SA_DWICII INSULATION
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| NTRODUCTION

Thermal conductivity of a titanium fotl sandwtch panel supplied by Rohr

Industries was measured in air at four temperatures from ambient to 800F

on a guarded hot plate apparatus. Measurements were made by General

Dynamics Convair Divisions' Physical Properties Laboratory.

TEST SPECIHENS

The test specimens consisted Gf two panels 8" x 8" x approximately .68".

They were composed of a multi-layer convoluted titanium foil core with

titanium foil face sheets. Edges were open.

TEST HETHOD

Heasurements were made on a guarded hot plate apparatus custom-built for

tile measurements. The apparat, s is shown schematically in Figure l. ]t

consists of a pair of identical test panels with a thin guarded heater

sandwiched between. The outer face of each panel ts ]n contact with

another heater assembly. Both faces of both panels and a11 four heaters

(center, guard and 2 cold-face) are instrumented with thermocouples for

temperature measurements. The entire assembly is lightly clamped together

and encased in several layers of glass fabric insulation.

Heasurements are made by adjusting electrical power to all heaters to

establish the desired hot and cold face temperatures. Power to the guard

heater ts adJusteu to establish the same temperature in the center and

guard areas of the hot face to prevent lateral heat flow.

k-3



When equilibrium has been reached, conductivity is calculated from the

center heater power, the center area, the specimen thickness and the

t_|perature difference between the hot and cold faces using:

K : .(.b_f/_K)._-_t_
A • ._T
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TEST RESULTS

Conductivity values measured are shown in Table 1. They are reportedly

higher by approximately 50% than analytical values provided to the requester,

Excessive air flow through the specimen was suspected and potnts were

repeated at ambient and 750F with tighter edge insulation and wtth the

stack vertical instead of horizontal. As the date shows, there were no

effects significant enough to explatn these dtfferences_

TABLE 1. TEST RESULTS

Mean T

83.3

255.3

500.0

746.0

93.8

93.2

733.5

736.0

18.6

24.7

20.0

50.0

14.5

13.3

32.0

K
BTUIHR-FT-F) Comments

.035 Horizontal, loose fiber glass Insulation

on edges

.067 Horizontal, loose fiber glass insulation

on edges

.lO0 Horizontal, loose fiber glass insulation

on edges

.128 Horizontal, loose fiber glass insulation

on edges

.03g Horizontal, tight dynaquartz insulation

on edges

.041 Vertical, tight dynaquartz Insulatlon

on edges

.126 Horlzontal, tight dynaquartz insulation
on edges

.133 Vertical, tight dynaquartz insulation
on edges

*rio te: Subsequent to the tests by General Dynamics reported In this Appendix,

conductivity measurements were made by Rohr Industries on a 305 x 305

mm (12 x 12 inch) panel. Results from these addltional tests have
been added to the figure in this Appendix. Also shown Is an analytical

curve calculated from tlASA CP-2065.
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Mean T

(F)

83.3

255.3

500.0

746.0

93.8

93.2

733.5

736.0

!8.6

24.7

20.0

50.0

14.5

13.3

32 .O

30.0

K

(BTU/HR-FT-F)

.035

.067

•I00

.128

•039

.041

•126

.133

Comments

Horizontal, loose fiber glass insulation on edges

Horizontal, loose fiber glass insulation on edge_

Horizontal, loose fiber glass insulation on edges

Horizontal, loose fiber glass insulation on edges

Horizontal, tight dynaquartz insulation on edges

Vertical, tight dynaquartz insulation on edges

Horizontal, tight dynaquartz insulation on edges

Vertical, tight dynaquartz insulation on edges
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